skip to main content


Search for: All records

Creators/Authors contains: "Fosu, Boniface"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 9, 2025
  2. Most current climate models predict that the equatorial Pacific will evolve under greenhouse gas–induced warming to a more El Niño-like state over the next several decades, with a reduced zonal sea surface temperature gradient and weakened atmospheric Walker circulation. Yet, observations over the last 50 y show the opposite trend, toward a more La Niña-like state. Recent research provides evidence that the discrepancy cannot be dismissed as due to internal variability but rather that the models are incorrectly simulating the equatorial Pacific response to greenhouse gas warming. This implies that projections of regional tropical cyclone activity may be incorrect as well, perhaps even in the direction of change, in ways that can be understood by analogy to historical El Niño and La Niña events: North Pacific tropical cyclone projections will be too active, North Atlantic ones not active enough, for example. Other perils, including severe convective storms and droughts, will also be projected erroneously. While it can be argued that these errors are transient, such that the models’ responses to greenhouse gases may be correct in equilibrium, the transient response is relevant for climate adaptation in the next several decades. Given the urgency of understanding regional patterns of climate risk in the near term, it would be desirable to develop projections that represent a broader range of possible future tropical Pacific warming scenarios—including some in which recent historical trends continue—even if such projections cannot currently be produced using existing coupled earth system models. 
    more » « less
    Free, publicly-accessible full text available August 15, 2024
  3. Abstract

    Dendrochronology in West Africa has not yet been developed despite encouraging reports suggesting the potential for long tree-ring reconstructions of hydroclimate in the tropics. This paper shows that even in the absence of local tree chronologies, it is possible to reconstruct the hydroclimate of a region using remote tree rings. We present the West Sub-Saharan Drought Atlas (WSDA), a new paleoclimatic reconstruction of West African hydroclimate based on tree-ring chronologies from the Mediterranean Region, made possible by the teleconnected climate relationship between the West African Monsoon and Mediterranean Sea surface temperatures. The WSDA is a one-half degree gridded reconstruction of summer Palmer Drought Severity indices from 1500 to 2018 CE, produced using ensemble point-by-point regression. Calibration and verification statistics of the WSDA indicate that it has significant skill over most of its domain. The three leading modes of hydroclimate variability in West Africa are accurately reproduced by the WSDA, demonstrating strong skill compared to regional instrumental precipitation and drought indices. The WSDA can be used to study the hydroclimate of West Africa outside the limit of the longest observed record and for integration and comparison with other proxy and archaeological data. It is also an essential first step toward developing and using local tree-ring chronologies to reconstruct West Africa’s hydroclimate.

     
    more » « less
  4. Abstract

    Most climate models project an enhanced mean sea surface temperature (SST) warming in the equatorial Pacific and Atlantic, and a zonal SST dipole in the Indian Ocean. The remote influences of these SST change patterns remain uncertain. To examine the extent to which the patterns of SST changes in the tropical Indian and Atlantic Oceans modulate the warming in the tropical Pacific Ocean, we compare nudging experiments with prescribed structured and uniform SST changes in the tropics outside the Pacific. We find that the warming patterns in the tropical Indian and Atlantic Oceans, respectively, drive a canonical La Niña‐like and elongated equatorial cooling through the Bjerknes feedback, acting to attenuate the warming in the equatorial Pacific substantially. The different SST cooling responses emanate from subtle differences between the initial wind forcing driven by the two basins' SST change patterns. These results have significant implications for future climate change projections.

     
    more » « less